
Query Processing

in Highly-Loaded Search Engines

Daniele Broccolo1,2, Craig Macdonald3, Salvatore Orlando1,2, Iadh Ounis3,
Raffaele Perego2, Fabrizio Silvestri2, and Nicola Tonellotto2

1 Università Ca’Foscari of Venice
2 ISTI-CNR of Pisa

3 University of Glasgow
firstname.surname@unive.it, firstname.surname@isti.cnr.it,

firstname.surname@glasgow.ac.uk

Abstract. While Web search engines are built to cope with a large
number of queries, query traffic can exceed the maximum query rate
supported by the underlying computing infrastructure. We study how
response times and results vary when, in presence of high loads, some
queries are either interrupted after a fixed time threshold elapses or
dropped completely. Moreover, we introduce a novel dropping strategy,
based on machine learned performance predictors to select the queries
to drop in order to sustain the largest possible query rate with a relative
degradation in effectiveness.

Keywords: Distributed Search Engines, Efficiency, Effectiveness,
Throughput.

1 Introduction

In this paper we study strategies for query processing in highly-loaded Web
Search Engines (SEs). We refer to a classical distributed SE architecture, adopt-
ing a Document Partitioning strategy [2], where each query server manages a
local index partition (shard), built on a non-overlapping subset of the whole doc-
ument collection. Queries are processed on all the shards in parallel, and partial
results, ordered by their score, are returned to a broker for the final ranking.
Dynamic pruning strategies (e.g. WAND [3] or MaxScore [4]) have been proposed
to reduce query processing times, by avoiding to score a subset of documents
(possibly those that are likely to not be present in the final list of results). We
can thus use these techniques to improve the throughput when unsustainable
bursts of queries arrive to the SE, even if they potentially reduce the qual-
ity of the retrieved results. Another ranking strategy that trades effectiveness
for retrieval efficiency is based on impact-sorted indexes [1], but since Boolean
querying becomes harder to support and inclusion of new documents is also
complex, postings lists are commonly maintained in document-sorted order. Al-
ternatively, we can choose to fully score arriving queries, and drop during peak
load the queries that cannot be processed within a fixed time threshold [5].

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 49–55, 2013.
c© Springer International Publishing Switzerland 2013

50 D. Broccolo et al.

In this paper, we investigate the performances of different dropping solutions
with the goal of maintaining the query response time under a user specified
time threshold. We compare näıve solutions with a novel method, based on the
prediction of query processing time which leverages a machine learning tech-
nique. We consider disjunctive query processing with full DAAT as the baseline
strategy [4]. Since our reference architecture is distributed, we design a model
to predict query processing times1 to be deployed at each query server. We use
the predictors to understand when a query has to be dropped in order to re-
serve the current capacity of the SE for processing the remaining query traffic.
We test our solution while varying the query arrival rate, from 5 to 100 queries
per second (q/s), and measuring the query response time and the effectiveness in
terms of NDCG@20 for all the methods proposed. Our approach can remarkably
decrease the total number of queries dropped and also improve the overall SE
effectiveness, whilst attaining query response times within the time threshold.
For instance, for a query arrival rate of 100 per second, our strategy is able to
answer up to 40% of the queries without degrading effectiveness, while for our
baseline strategies this happens for only 10% of queries.

2 Prediction-Based Dropping

We consider that each query server of our distributed SE receives a query stream
from the query broker, and processes one query at a time. If a query server is
processing a query, and other queries arrive, they are locally enqueued until they
can be processed. Hence, the query response time for a query q is the sum of
the time spent waiting in the queue wt(q) and the processing time pt(q). The
length of the queue at each query server depends on the query arrival rate and
the processing time of the previous queries. In general, for higher query arrival
rates, the query response time increases, due to the longer waiting times. To
ensure low query response times in a high load environment, we fix a maxi-
mum processing threshold T that queries must be answered within. We adopt
two baseline strategies that define how a query server responds to a query q for
which T has elapsed during processing. The first strategy (hereinafter, Drop),
whenever wt(q)+pt(q) ≥ T , interrupts the processing of q and returns an empty
list of results. Similar to the Drop strategy, the second baseline (hereinafter,
Partial-Drop) returns the partial results list that has been computed thus far
(instead of dropping all results that have already been computed). Finally, we
note that each query server acts independently from the other servers, in an au-
tonomous fashion: each queue is managed locally, and any dropping strategy is
enforced locally. Hence, even if a query is fully processed on one query server, it
can be (partially-)dropped on another server, causing the final results returned
by the query broker to the user to be partial in nature.

Unlike the previously described baselines,in this paper we aim to use the pre-
dicted response times at each query server to understand if a query q can be
processed within the remaining time on that server before T has elapsed. Given

1 Query efficiency predictors have been proposed in [6] for WAND and MaxScore.

Query Processing in Highly-Loaded Search Engines 51

the predicted response time ̂pt(q) of query q, if the inequality ̂pt(q) ≤ T −wt(q)
does not hold, then the query is dropped before processing starts and the next
query is processed from the queue. In this way, the query server does not consume
processing resources for queries that cannot be fully (and effectively) completed
within the remaining time until the threshold T has elapsed. Query efficiency pre-
diction for full DAAT can be achieved using a machine learned algorithm designed
for a specific number of query terms and using the total number of postings to
be scored as feature [6]. We adopt a different learned model, where the number
of query terms is a feature, thus obtaining a single model instead of a model for
each query length. To further improve the quality of estimations based on the
total number of postings only, we use five additional features, which are listed in
Table 1(a). All features can be easily computed during the processing time with-
out affecting the query response time. The response times are predicted using a
machine learning model, i.e., a linear regression of all these features. The coef-
ficients of the regression model are computed by minimising the mean squared
error on a set of training queries. In the following, we refer to our prediction-
based dropping strategy as ML-Drop, and experiment to ascertain its properties
in terms of efficiency and effectiveness.

Table 1. (a) Features used for predicting DAAT processing time. (b) prediction
accuracy using different feature sets.

Query Efficiency Prediction Features

total no. of postings in the query’s term lists
no. of terms in the query
variance of the length of the posting lists
mean of the length of the posting lists
length of the shortest posting list
length of the longest posting list

(a)

features RMSE err ≤ 10 ms

1a 8.78 ·10−3 87.83 %
6 4.98 ·10−3 95.53 %

(b)

a total no. of postings in the
query’s term lists

3 Experiments

The research questions addressed in this paper are: (i) What is the accuracy of
our response time predictors? (ii) What are the benefits of our ML-Drop strategy
with respect to the two baseline strategies, Drop and Partial-Drop?

First we define the setup for all the experiments. The SE is implemented in
C++, exploiting multi-threading to handle multiple queries, and communica-
tions between query servers and the broker are implemented by low-level socket
interfaces to reduce overheads. Each query is processed in disjunctive mode us-
ing a full DAAT strategy, where documents are ranked using BM25 with its default
parameters. We use a cluster of twelve machines, where each machine has one
Intel Xeon 2.40GHz X32230 CPU and 8GB of RAM, connected using Gigabit
Ethernet. Ten machines are used for the query servers, one for the broker and
the last one for the client that simulates. For the experiments, we use 40,000

52 D. Broccolo et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

Av
er

ag
e

qu
er

y
re

sp
on

se
 ti

m
e

(s
ec

on
ds

)

Queries per second

DAAT
Drop

Partial-Drop
ML-Drop

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

ND
CG

@
20

Queries per second

DAAT
Drop

Partial-Drop
ML-Drop

(b)

Fig. 1. (a) Average query response time (in seconds) for different dropping strategies;
(b) Effectiveness (NDCG@20)

queries from the TREC Million Query Track 2009 [7], 678 of which have cor-
responding relevance assessments: 30,000 queries are used as the training set
for learning regression models for response time prediction; the other 10,000,
including the 687 with relevance assessments, are used for testing the accuracy
of the predictors, and retrieval experiments. The corresponding document cor-
pus is ClueWeb09 (cat. B), which comprises 50 million English Web documents.
We index the document collection using the Terrier search engine2, removing
standard stopwords and applying Porter’s English stemmer (our C++ retrieval
system can read Terrier’s indices). The resulting index is document-partitioned
into ten separate index shards, while maintaining the original ordering of the
collection. We retrieve 1,000 results for each query. Finally, we set T = 0.5 s as
our time threshold. We choose this value because is a reasonable time from the
user perspective. Indeed, in our architecture, 98% of queries can be answered
within 0.5 seconds using the full DAAT strategy when the system is not heavy
loaded.

Prediction Accuracy. Table 1(b) shows the average accuracy of our predic-
tion models measured in terms of root mean square error (RMSE) respect to
the actual query execution time. The first row shows the performance of the
predictors using only one feature, namely the total number of postings for each
query. The second row shows the performance obtained when all the six features
of Table 1(a) are used. Our model with six features halves the RMSE over the
10, 000 queries used for the test set. Given an average processing time for DAAT of
110 ms, we compute the percentage of test queries with a predicted processing
time with a maximum absolute error of 10 ms, and our model performs markedly
better (∼96%) than the single feature model (∼88%). Hence, in conclusion to
our first research question, we find that the proposed additional features enhance
remarkably the accuracy of the predicted response times.

Dropping Strategies. In order to analyse the performance of three differ-
ent query dropping strategies, namely Drop, Partial-Drop and ML-Drop, we

2 http://terrier.org/

http://terrier.org/

Query Processing in Highly-Loaded Search Engines 53

Table 2. Effectiveness (NDCG@20) for the different methods. Statistically significant
degradations vs. DAAT, as measured by the paired t-test, are denoted by � (p < 0.05)
and � (p < 0.01).

Method 5 q/s 10 q/s 20 q/s 30 q/s 40 q/s 50 q/s 100 q/s

DAAT 0.228 0.228 0.228 0.228 0.228 0.228 0.228
Drop 0.219 � 0.200 � 0.140 � 0.105 � 0.076 � 0.056 � 0.021 �

Partial-Drop 0.227 0.224 � 0.210 � 0.189 � 0.173 � 0.161 � 0.110 �
ML-Drop 0.227 0.227 0.217 0.207 � 0.205 � 0.203 � 0.195 �

compute the average query response time for the various strategies and we com-
pare them to the full DAAT processing strategy without any dropping. Figure
1(a) shows the average query response time (measured on the broker) vs. the
number of queries per second (denoted q/s). We observe that using the full DAAT
processing for all the queries implies an increasing query response time that is
caused by congestion at the queues. However, all the other strategies (Drop,
Partial-Drop and ML-Drop) manage to answer, on average, within the time
threshold T = 0.5 s, as the superimposed curves show. As expected, the Drop

and Partial-Drop strategies respect this threshold, as they are both defined
such that query processing terminates within T . Our approach (ML-Drop), in-
stead, can respect the threshold since our predictor are able to identify queries
to drop that cannot be processed within T . Next, we examine the impact on
effectiveness of the different processing methods. Figure 1(b) presents effective-
ness in terms of NDCG@20, while Table 2 reports the same NDCG@20 values,
in conjunction with statistical significance tests using the paired t-test. As ex-
pected, full processing (DAAT) always obtains the best effectiveness, at the price
of a higher query response time. The other strategies obtain an effectiveness
dependent on the system load, since the number of dropped queries is impacted
by the remaining time for processing queries. This time is inversely proportional
to the waiting time of the query itself. The least effective method is Drop: even
though it achieves high effectiveness when the system is unloaded, NDCG@20
decreases quickly as the load increases, because the processing of many queries
cannot be finished within the permitted time. Consequently, these queries are
dropped by the query server and the time spent is wasted, as no results are
returned to the broker. The other baseline, Partial-Drop, obtains a better ef-
fectiveness in comparison to Drop. This is expected, because by returning partial
results that have been computed within the limited processing time, some rele-
vant results for some queries can be retrieved on average. On the other hand, the
effectiveness of ML-Drop is always higher than the two baselines. For instance,
when queries arrive at a rate of 100 q/s, ML-Drop results in an effectiveness
drop of 15% NDCG@20 (0.228 to 0.195, significant for p < 0.05), compared to
Partial-Drop which would result in a 52% drop in effectiveness, significant for
p < 0.01. Similarly, for query arrival rates up to 20 q/s, ML-Drop exhibits no
significant degradation in effectiveness, which is in contrast with both Drop and
Partial-Drop. The higher effectiveness of ML-Drop compared to the baselines is
explained by the pro-active control over the query dropping behaviour: queries

54 D. Broccolo et al.

Table 3. Percentage of globally dropped (G) and partially evaluated queries (P)

Methods
10 q/s 20 q/s 30 q/s 40 q/s 50 q/s 100 q/s

P+G G P+G G P+G G P+G G P+G G P+G G

Drop 10% 1% 36% 9% 51% 25% 62% 34% 70% 41% 90% 57%

Partial-Drop 9% - 32% - 48% - 60% - 71% - 91% -

ML-Drop 6% 1% 20% 2% 31% 7% 38% 11% 44% 15% 59% 28%

which cannot satisfy threshold T are immediately discarded, thus leaving the
potential for more queries to be fully processed. To illustrate this, we analyse
the number of queries that are globally dropped for the different methods. A
query is globally dropped when it is dropped by all query servers processing
it. Indeed, as query servers are independent, a query can be dropped only in a
subset of the query servers. It is therefore possible that some queries have partial
results, even when the Drop strategy is used. Table 3 shows, for each strategy
and query rate, the percentage of queries that are either partially evaluated or
globally dropped (see columns P+G, where the best values are in bold). The
various columns G show the percentages of queries that are globally dropped. In
the case of Partial-Drop, since the expiry of the time threshold causes some
local partial results to be sent back to the broker, no global drops are observed.
For high query loads, i.e., 100 q/s, this impacts 90% of processed queries. For the
same high arrival rate, the Drop strategy globally drops around 57% of queries
while returning partial results for 33% of queries. However, in the case of the
ML-Drop strategy, the number of queries globally dropped or with partial results
markedly decreases in relation to the other strategies. Hence, in addressing our
second research question, we find that the proposed ML-Drop strategy reduces
the number of queries dropped under high load, resulting in improved effective-
ness. Indeed, when 100 queries per second arrive, ML-Drop is able to answer up
to 40% of the queries without effectiveness degradations, while for Drop and
Partial-Drop strategies this happens for only 10% of queries.

4 Conclusions

In this paper, we analysed dropping and stopping methods for query processing
in presence of an unsustainable workload. Our aim was to answer queries within
a fixed time threshold, whilst maintaining overall effectiveness of the results. We
proposed a novel dropping method based on the prediction of query execution
time. We test the proposed method and the baseline on a distributed SE using
10, 000 queries and a collection of 50 million documents, varying the number of
queries per second. Moreover, effectiveness measures use the relevance assess-
ments from the TREC Million Query track. Our efficiency predictor models are
able to predict the query response time for DAAT with an error less than 10 ms in
more than 93% of the cases. We showed that by using these predictors to select
the queries to drop, our proposal obtains up to 80% improvement in comparison

Query Processing in Highly-Loaded Search Engines 55

to the most effective of the used baselines. Finally, we showed that our method
decreases the number of dropped queries when the system is overloaded.

Acknowledgements. This work was partially supported by the EU projects
InGeoCLOUDS (no. 297300), MIDAS (no. 318786), E-CLOUD (no. 325091), the
Italian PRIN 2011 project “Algoritmica delle Reti Sociali Tecno-Mediate” (2013-
2014) and the Regional (Tuscany) project SECURE! (FESR PorCreo 2007-2011).

References

1. Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with effective early
termination. In: Proceedings of SIGIR, pp. 35–42 (2001)

2. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The Google cluster
architecture. IEEE Micro 23(2), 22–28 (2003)

3. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.: Efficient query eval-
uation using a two-level retrieval process. In: Proceedings of CIKM, pp. 426–434
(2003)

4. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans.
Inf. Syst. 14(4), 349–379 (1996)

5. Tonellotto, N., Macdonald, C., Ounis, I.: Efficient and Effective Retrieval using
Selective Pruning. In: Proceedings of WSDM (2013)

6. Macdonald, C., Tonellotto, N., Ounis, I.: Learning to Predict Response Times for
Online Query Scheduling. In: Proceedings of SIGIR, pp. 621–630 (2012)

7. Carterette, B., Pavlu, V., Fang, H., Kanoulas, E.: Million Query Track 2009
Overview. In: Proceedings of TREC (2009)

	Query Processing in Highly-Loaded Search Engines
	Introduction
	Prediction-Based Dropping
	Experiments
	Conclusions

